
INNER WORKINGS

Crop researchers harness artificial intelligence to
breed crops for the changing climate
Carolyn Beans, Science Writer

Until recently, the field of plant breeding looked a lot
like it did in centuries past. A breeder might examine,
for example, which tomato plants were most resistant
to drought and then cross the most promising plants
to produce the most drought-resistant offspring. This
process would be repeated, plant generation after
generation, until, over the course of roughly seven
years, the breeder arrived at what seemed the
optimal variety.

Now, with the global population expected to swell
to nearly 10 billion by 2050 (1) and climate change
shifting growing conditions (2), crop breeder and ge-
neticist Steven Tanksley doesn’t think plant breeders
have that kind of time. “We have to double the pro-
ductivity per acre of our major crops if we’re going to

stay on par with the world’s needs,” says Tanksley, a
professor emeritus at Cornell University in Ithaca, NY.

To speed up the process, Tanksley and others are
turning to artificial intelligence (AI). Using computer
science techniques, breeders can rapidly assess which
plants grow the fastest in a particular climate, which genes
help plants thrive there, and which plants, when crossed,
produce an optimum combination of genes for a given
location, opting for traits that boost yield and stave off
the effects of a changing climate. Large seed compa-
nies in particular have been using components of AI
for more than a decade. With computing power rapidly
advancing, the techniques are now poised to accelerate
breeding on a broader scale.

AI is not, however, a panacea. Crop breeders still
grapple with tradeoffs such as higher yield versus

Researchers at ETH Zürich use standard color images and thermal images collected by drone to determine how plots of
wheat with different genotypes vary in grain ripeness. Image credit: Norbert Kirchgessner (ETH Zürich, Zürich,
Switzerland).
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marketable appearance. And even the most sophisti-
cated AI cannot guarantee the success of a new
variety. But as AI becomes integrated into agriculture,
some crop researchers envisage an agricultural revo-
lution with computer science at the helm.

An Art and a Science
During the “green revolution” of the 1960s, re-
searchers developed new chemical pesticides and
fertilizers along with high-yielding crop varieties that
dramatically increased agricultural output (3). But the
reliance on chemicals came with the heavy cost of
environmental degradation (4). “If we’re going to do
this sustainably,” says Tanksley, “genetics is going to
carry the bulk of the load.”

Plant breeders lean not only on genetics but also
on mathematics. As the genomics revolution unfolded
in the early 2000s, plant breeders found themselves
inundated with genomic data that traditional statistical
techniques couldn’t wrangle (5). Plant breeding
“wasn’t geared toward dealing with large amounts of
data and making precise decisions,” says Tanksley.

In 1997, Tanksley began chairing a committee at
Cornell that aimed to incorporate data-driven re-
search into the life sciences. There, he encountered an
engineering approach called operations research that
translates data into decisions. In 2006, Tanksley
cofounded the Ithaca, NY-based company Nature
Source Improved Plants on the principle that this en-
gineering tool could make breeding decisions more
efficient. “What we’ve been doing almost 15 years
now,” says Tanksley, “is redoing how breeding is
approached.”

A Manufacturing Process
Such approaches try to tackle complex scenarios.
Suppose, for example, a wheat breeder has 200 ge-
netically distinct lines. The breeder must decide which
lines to breed together to optimize yield, disease re-
sistance, protein content, and other traits. The
breeder may know which genes confer which traits,
but it’s difficult to decipher which lines to cross in what
order to achieve the optimum gene combination. The
number of possible combinations, says Tanksley, “is
more than the stars in the universe.”

An operations research approach enables a re-
searcher to solve this puzzle by defining the primary
objective and then using optimization algorithms to
predict the quickest path to that objective given the
relevant constraints. Auto manufacturers, for example,
optimize production given the expense of employees,
the cost of auto parts, and fluctuating global curren-
cies. Tanksley’s team optimizes yield while selecting
for traits such as resistance to a changing climate.
“We’ve seen more erratic climate from year to year,
which means you have to have crops that are more
robust to different kinds of changes,” he says.

For each plant line included in a pool of possible
crosses, Tanksley inputs DNA sequence data, phe-
notypic data on traits like drought tolerance, disease
resistance, and yield, as well as environmental data for
the region where the plant line was originally devel-
oped. The algorithm projects which genes are asso-
ciated with which traits under which environmental
conditions and then determines the optimal combi-
nation of genes for a specific breeding goal, such as
drought tolerance in a particular growing region, while
accounting for genes that help boost yield. The al-
gorithm also determines which plant lines to cross
together in which order to achieve the optimal com-
bination of genes in the fewest generations.

Nature Source Improved Plants conducts, for ex-
ample, a papaya program in southeastern Mexico
where the once predictable monsoon season has be-
come erratic. “We are selecting for varieties that can
produce under those unknown circumstances,” says
Tanksley. But the new papaya must also stand up to
ringspot, a virus that nearly wiped papaya from Hawaii
altogether before another Cornell breeder developed
a resistant transgenic variety (6). Tanksley’s papaya
isn’t as disease resistant. But by plugging “rapid
growth rate” into their operations research approach,
the team bred papaya trees that produce copious fruit

Nature Source Improved Plants (NSIP) speeds up its papaya breeding program
in southeastern Mexico by using decision-making approaches more common in
engineering. Image credit: Nature Source Improved Plants/Jesús Morales.
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within a year, before the virus accumulates in
the plant.

“Plant breeders need operations research to help
them make better decisions,” says William Beavis, a
plant geneticist and computational biologist at Iowa
State in Ames, who also develops operations research
strategies for plant breeding. To feed the world in
rapidly changing environments, researchers need to
shorten the process of developing a new cultivar to
three years, Beavis adds.

The big seed companies have investigated use of
operations research since around 2010, with Syn-
genta, headquartered in Basel, Switzerland, leading
the pack, says Beavis, who spent over a decade as a
statistical geneticist at Pioneer Hi-Bred in Johnston,
IA, a large seed company now owned by Corteva,
which is headquartered in Wilmington, DE. “All of the
soybean varieties that have come on the market within
the last couple of years from Syngenta came out of a
system that had been redesigned using operations
research approaches,” he says. But large seed com-
panies primarily focus on grains key to animal feed
such as corn, wheat, and soy. To meet growing food
demands, Beavis believes that the smaller seed com-
panies that develop vegetable crops that people ac-
tually eat must also embrace operations research.
“That’s where operations research is going to have the
biggest impact,” he says, “local breeding companies
that are producing for regional environments, not for
broad adaptation.”

In collaboration with Iowa State colleague and
engineer Lizhi Wang and others, Beavis is developing
operations research-based algorithms to, for example,
help seed companies choose whether to breed one
variety that can survive in a range of different future
growing conditions or a number of varieties, each
tailored to specific environments. Two large seed
companies, Corteva and Syngenta, and Kromite, a
Lambertville, NJ-based consulting company, are
partners on the project. The results will be made
publicly available so that all seed companies can learn
from their approach.

Drones and Adaptations
Useful farming AI requires good data, and plenty of it.
To collect sufficient inputs, some researchers take to
the skies. Crop researcher Achim Walter of the Insti-
tute of Agricultural Sciences at ETH Zürich in Swit-
zerland and his team are developing techniques to
capture aerial crop images. Every other day for several
years, they have deployed image-capturing sensors
over a wheat field containing hundreds of genetic
lines. They fly their sensors on drones or on cables
suspended above the crops or incorporate them into
handheld devices that a researcher can use from an
elevated platform (7).

Meanwhile, they’re developing imaging software
that quantifies growth rate captured by these images
(8). Using these data, they build models that predict
how quickly different genetic lines grow under differ-
ent weather conditions. If they find, for example, that a
subset of wheat lines grew well despite a dry spell,

then they can zero in on the genes those lines have in
common and incorporate them into new drought-
resistant varieties.

Research geneticist Edward Buckler at the US De-
partment of Agriculture and his team are using ma-
chine learning to identify climate adaptations in 1,000
species in a large grouping of grasses spread across
the globe. The grasses include food and bioenergy
crops such as maize, sorghum, and sugar cane.
Buckler says that when people rank what are the most
photosynthetically efficient and water-efficient spe-
cies, this is the group that comes out at the top. Still,
he and collaborators, including plant scientist Elizabeth
Kellogg of the Donald Danforth Plant Science Center
in St. Louis, MO, and computational biologist Adam
Siepel of Cold Spring Harbor Laboratory in NY, want
to uncover genes that could make crops in this group
even more efficient for food production in current and
future environments. The team is first studying a select
number of model species to determine which genes
are expressed under a range of different environmental
conditions. They’re still probing just how far this predictive
power can go.

Such approaches could be scaled up—massively.
To probe the genetic underpinnings of climate ad-
aptation for crop species worldwide, Daniel Jacobson,
the chief researcher for computational systems biol-
ogy at Oak Ridge National Laboratory in TN, has
amassed “climatype” data for every square kilometer
of land on Earth. Using the Summit supercomputer,
they then compared each square kilometer to every
other square kilometer to identify similar environ-
ments (9). The result can be viewed as a network of
GPS points connected by lines that show the degree
of environmental similarity between points.

In collaboration with the US Department of Energy’s
Center for Bioenergy Innovation, the team combines
this climatype data with GPS coordinates associated
with individual crop genotypes to project which genes
and genetic interactions are associated with specific
climate conditions. Right now, they’re focused on
bioenergy and feedstocks, but they’re poised to explore
a wide range of food crops as well. The results will
be published so that other researchers can conduct
similar analyses.

The Next Agricultural Revolution
Despite these advances, the transition to AI can be
unnerving. Operations research can project an ideal
combination of genes, but those genes may interact in

“For me, breeding is much more like art. I need to see
the variation and I don’t prejudge it. I know what I’m
after, but nature throws me curveballs all the time, and
I probably can’t count the varieties that came from
curveballs.”

—Molly Jahn
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unpredictable ways. Tanksley’s company hedges its
bets by engineering 10 varieties for a given project in
hopes that at least one will succeed.

On the other hand, such a directed approach could
miss happy accidents, says Molly Jahn, a geneticist
and plant breeder at the University of Wisconsin–
Madison. “For me, breeding is much more like art. I
need to see the variation and I don’t prejudge it,” she
says. “I know what I’m after, but nature throws me
curveballs all the time, and I probably can’t count the
varieties that came from curveballs.”

There are also inherent tradeoffs that no algorithm
can overcome. Consumers may prefer tomatoes with a
leafy crown that stays green longer. But the price a
breeder pays for that green calyx is one percent of the
yield, says Tanksley.

Image recognition technology comes with its own
host of challenges, says Walter. “To optimize algo-
rithms to an extent that makes it possible to detect a
certain trait, you have to train the algorithm thousands
of times.” In practice, that means snapping thousands
of crop images in a range of light conditions. Then
there’s the ground-truthing. To knowwhether themodels
work, Walter and others must measure the trait they’re
after by hand. Keen to know whether the model accu-
rately captures the number of kernels on an ear of corn?
You’d have to count the kernels yourself.

Despite these hurdles, Walter believes that com-
puter science has brought us to the brink of a new
agricultural revolution. In a 2017 PNAS Opinion piece,
Walter and colleagues described emerging “smart
farming” technologies—from autonomous weeding
vehicles to moisture sensors in the soil (10). The au-
thors worried, though, that only big industrial farms
can afford these solutions. To make agriculture more
sustainable, smaller farms in developing countries
must have access as well.

Fortunately, “smart breeding” advances may have
wider reach. Once image recognition technology becomes
more developed for crops, which Walter expects will
happen within the next 10 years, deploying it may be
relatively inexpensive. Breeders could operate their own
drones and obtain more precise ratings of traits like time
to flowering or number of fruits in shorter time, says
Walter. “The computing power that you need once you
have established the algorithms is not very high.”

The genomic data so vital to AI-led breeding pro-
grams is also becoming more accessible. “We’re really
at this point where genomics is cheap enough that you
can apply these technologies to hundreds of species,
maybe thousands,” says Buckler.

Plant breeding has “entered the engineered
phase,” adds Tanksley. And with little time to spare.
“The environment is changing,” he says. “You have to
have a faster breeding process to respond to that.”
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